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ABSTRACT

The aims of this paper are threefold: to increase the level of awareness within tile

shock capturing community to the fact that many Godunov-type methods contain

subtle flaws that can cause spurious solutions to be computed; to identify one mech-

anism that might thwart attempts to produce very high resolution simulations; and

to proffer a simple strategy for overcoming the specific failings of individual Riemarn

solvers.
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1 Introduction

Over recent years, a plethora of shock-capturing schemes have been developed for

the Euler equations of gas dynamics. During this period, it. has emerged that one

of the more successful strategies for designing a shock capturing scheme is to follow

Godunov's[19] lead and utilize a classic initial-value problem known as a Riemann

problem[3]. Godunov assumed that a flow solution could be represented by a series of

piecewise constant states. Thus, the numerical representation closely approximates

the true solution near discontinuities, and regions of smooth flow are reasonably well

approximated by a series of step functions. He evolved this discretized flow solution

by considering the nonlinear interactions between its component states. Viewed in

isolation, each pair of neighbouring states constitutes a Riemann )problem, the solution

to which may be found exactly[8]. The results from these separate Riemann problems

may then be averaged so as to advance the flow solution through inle time increment.

Because it mimics much of the relevant physics, Godunov's scheme results in an

accurate and well-behaved treatment of shock waves.

Although it provides the bedrock upon which most modern schemes are built, in

its original form Godunov's method is ol" limited use. Firstly, the scheme proves to

be highly dissipative and so it requires an inordinately fine mesh to resolve complex

shock-on-shock interactions. Secondly, since a Riemann problem has no closed form

solution and can only be solved by some iterative method, Godunov's scheme is

significantly more expensive than schemes which employ ordinary finite-difference

operators.

One of the first people to address this second shortcoming was R.oe[19]. He argued

that since the Riemann problems associated with Godunov's method arise from an

approximation of the data, it might be sufficient to find only approximate solutions

to these Riemann problems, provided that they still describe important, nonlinear

behaviour. His motivation being, that approximate solutions can be computed much

more cheaply than exact solutions. Thus the industry of designing approximate Rie-

mann solvers was born[14, 15, 4, 23]. Now whilst Godunov-type schemes are often

held up to be models of robustness they can on occasions fail quite spectacularly. For

example, when computing shock reflection problems, Roe's method can sometimes go

awry by admitting solutions for which the Mach stem is inexplicably kinked. The ex-

istence of such failings partly explains why no consensus of opinion has been reached

concerning the ideal Rimann -olver. Whenever a new failing is unearthed, it, adds

fuel to the great Riemann solver debate; method X is better than method V. because
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of reasons A, B and C. It is our contention that for all the current crop of H Iemlalll

solvers, at least one set of circumstances may be found for which the solver is found

wanting; some failings are just more visible than others.

In Section 2 we catalogue a number of situations in which anomalous behaviour is

known to occur. This catalogue should serve to increase the general level of awareness

within the shock cap)turing community to the current limitations of Riemann solver

technology. At present, this awareness is not all that it should be, there are many

instances in the literature where suspect numerical results are presented with either

little or no adverse comment. We believe that one of the failings listed in our catalogue

has hitherto gone unreported. In Section 3 we proffer a diagnosis of the mechanism

which caii-,, this new failing.

At this juncture it should be noted that any foibles that a specific Riemann solver

might have, may usually be controlled by the judicious use of a small amount of

artificial dissipation. Indeed, it is worth pointing out that Woodward and Collela's

PPM scheme[2], which has proved itself to be more robust than most Godunov-type

schemes, does in fact employ an elaborate artificial dissipation mechanism to supple-

ment the dissipation provided via upwinding. As will be described in Section 4, we

favour a strategy whereby the weaknesses of any one solver are overcome by combin-

ing it with one or more complementary solvers. The main advantages of this approach

over that of adding artificial dissipation are twofold. Firstly, it does not degrade tile

resolution of the base Riemann solver; it is possible to control certain instabilities by

changing the flavour of the dissipation mechanism rather than increasing the absolute

level of dissipation. Secondly, it does not necessitate a host of tunable parameters,

and so this synergetic strategy does not negate the principal advantage of Godunov-

type schemes over other shock capturing methods. Of course, we are left with tile

difficulty of deciding when to use one Riemann solver in preference to another; how-

ever, we present a number of computations which suggest that this difficulty is not

particularly bothersome.

Finally, in Section 5, we list the main conclusicns that we have drawn from this

work. Note that in this paper we do not address the first shortcoming of Godunov's

method, namely its low resolution. Following van Leer[26], it is assumed that a high-

order extension to a first-order method can always be achieved by pre-processing the

data supplied to the Riemann solver.
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2 A Catalogue of Failings

We now present several instances where various Riemann solvers are known to give

unreliable results. While most of these cases will be known to the aficionado, we

believe that one of the cases which we are about to describe has hitherto gone un-

reported in the literature. Although our catalogue is not exhaustive, we hope that.

it might save some investigators from the harrowing experience of spending weeks or

even months searching for coding errors that simply (1o not exist.

All the computational results shown in this section are for first-order schemes.

since such methods have low resolution our calculations employed relatively fine

meshes; for clarity, grids are drawn using every other fourth grid line.

2.1 Expansion Shocks

By far the most widely investigated failing is that some Riemann solvers do not

satisfy an "entropy condition" such schemes call admit non-physical solutions such

as expansion shocks. Osher[14] has found a general condition for a scheme to be

entropy satisfying when applied to scalar equations and he designates such schemes E-

schemes. At present, however, any extension to a system of equations contains a large

amount of empiricism and must therefore remain suspect. Indeed, Godunov's method

is classified as an E-scheme but, as observed by Woodward and Collela[27], it can give

rise to nearly discontinuous expansion fans near sonic points. The density contours

shown in Figure 1 illustrate this deficiency of Godunov's method quite clearly. These

results are taken from the diffraction of a strong shock wave, M, = 5.09 with "y 1.4.

around a 900 corner.

In its basic form, Roe's scheme is another solver that admits expansion shocks,

however, several fixes have been proffered which cure Roe's scheme of this particu-

lar affliction[20, 5, 28]. Such fixes are typical of the way in which Riemann-solver

deficiencies have been countered up to now. Whilst this strategy has proved reason-

ably successful, it has a number of drawbacks. Sometimes a fix uses a parameter

which must be retuned between problems and hence one of the major advantages of

Riemann-based schemes over say artificial-dissipation schemes is lost. Alternatively.

a scheme may require more than one fix, and it may be unclear how the different fixes

interact with one another.
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(a) (b)

Figure 1: A strong shock diffracting around a corner gives rise to an expansion shock:

(a) Density contours, (b) Computational grid.

2.2 Negative Internal Energies

Another situation, in which some Riemann solvers are found wanting, occurs when-

ever the dominant energy mode is kinetic rather than thermal. For such solvers,

the kinetic energy computed from a numerical approximation to the conservation

laws of mass and momentum, can exceed the total energy computed via an app~rox-

imation to the conservation law of energy. Thus they can yield negative internal

energies, and hence negative pressures, which cause the scheme to fail. Einfeldt ct

a1.[5] call any scheme which can be guaranteed not to yield negative pressures, "pos-

itively conservative". They have shown that while Godunov's scheme is "positively
conservative", the reverse is true for any Godunov-type scheme based on a linearized

Riemann solver. Indeed, thle basic form of Roe's scheme is unable to cope with the

test problem shown in Figure 1; the strength of thle diffracting shock is sufficient to

cause a negative pressure to be computed near the apex of the corner. Roe's scheme

may be madle "positively conservative"by modifying its wave speeds, in essence, the

scheme is made more dissipative by increasing the spread in velocity between the two

acoustic waves[5].



2.3 Slowly Moving Shocks

Since shock capturing schemes do not resolve the internal structure of a shock wave,

no physical significance can be attached to the discrete shock structure produced by a

numerical scheme; methods are built upon the premise that shock profiles are mono-

tone, the precise structure comes about as a matter of course and is not preordained.

Unfortunately, Roberts has shown that the nature of the shock structure produced

by a particular scheme can have a large bearing on how well the scheme copes with

slowly moving shock waves[21]. Godunov-type methods fare quite badly in this re-

spect, as the shock moves relative to the mesh, the shock profile flexes, perturbing

the supposedly passive characteristic fields as it does so.

Figure 2 shows a snapshot of the shock profile produced by Einfeldt's IILLE

sch•,me[4], taken from the simulation of a shock wave which is moving slowly from

left to right; the pre-shock state, (density, velocity, pressure), is (1, -3.44, 1), and

the post-shock state is (3.86, -0.81, 10.33). Note that for a Courant number of one,

it takes 50 time steps for this shock to traverse one mesh cell. The low frequency

perturbations observed in this figure are produced to a greater or lesser extent by

any scheme which attempts to "recognize"a shock wave. For fast moving shocks,

the post-shock noise will be of a much shorter wavelength than is the case here, and

will be effectively damped by the dissipation of the scheme. Roberts reports that

Osher's ¢chcme[13] does not produce low frequency noise for slowly moving shocks,

since it never connects two adjacent states by a shock, and he concludes that there

may be advantages to using flux formulas that do not recognize the analytic shock

jump conditions.

Another situation, where the perturbation of a shock from its preferred profile

results in perturbations on the passive characteristic fields, occurs whenever a shock

crosses a discontinuity in mesh spacing[17]. But, in this case, sizeable perturbations

may occur whatever the speed of the shock.

4.0

3........... ..... .....

-- --. ... .. .. . .. -- .......... ............... ................ . . . . . . . . . . . . . . .. . . . . . . ...........................

m -

S 3.4 ..... ......... ............ . . . . . . . . . . . . . . . ... -+ ............ ........ ... ...... .............. .+ ...... .........

400 450 500 550 600 65C 700 750 800
P Mesh Cell

Figure 2: Low frequency, post-shock oscillations occur for slowly moving shock waves.
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2.4 The Carbuncle Phenomenon

Several authors have by now reported a failing of Roe's scheme which has been dubbed

the "carbuncle phenomenon" [16, 12, 11]. For steady-state, blunt-body calculations,

Roe's scheme sometimes admits a spurious solution in which a protuberance grows

ahcad of the bow shock, along the stagnation line. It appears that this effect is

more pronounced the more closely the grid is aligned to the bow shock. Also, a

carbuncle is more likely to appear for high Mach number flows than for low Mach

number flows. Figure 3 shows such a spurious solution, here the freestream Mach

number was taken to be 10. Note that along the stagnation line, the bow shock is

almost perfectly aligned with the grid. Consequently, parallel to the shock, Roe's

scheme will not add any dissipation via the contact and shear waves, to counteract

perturbations that appea'- through the acoustic waves; this appears to be a recurring

theme whenever Roe's method fails. It is interesting to note that if Harten's entropy

fix[28] is applied to the contact and shear waves, any shortcoming of Roe's scheme is

invariably cured. However, there is no justification, either physical or mathematical,

for applying this fix to these waves, it is just a convenient method for introducing an

amount of artificial dissipation into the scheme.

2.5 Kinked Mach Stems

During the course of developing a mesh adaption scheme, we encountered a failing of

Roe's scheme which is not dissimilar to the "carbuncle phenomenon"[17]. When the

reflection of a plane shock wave from a ramp lies in the double Mach reflection regime,

the principal Mach stem is sometimes inexplicably kinked. Figure 4 shows a snapshot

of the pressure contours taken during the reflection of a plane shock, M = 5.5 with

-' = 1.4, from a 300 ramp. The principal Mach stem is so severely kinked that it has

given rise to a spurious triple point. Similarly strange results have been produced by

Sawada[22], and by Itoh and Takayama[9]. As before, because of the way the Mach

stem is aligned with the grid, there is probably insufficient dissipation added via the

contact and shear waves to counteract perturbations that appear via the acoustic

waves.



(a)()

Figure~ P: Thc caitun, Ic p.1 c'r- n (a) D"rzity cont-lirs, (b) Computational grid.
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Figure 4: The principal Mach stem arisling fromt the reflect ion of plan(, shock front it

ramnp is inexplicably kinrked: (a) Pressure contours, (bh) (Com putational gridl.



2.6 Odd-Even Decoupling

8x far the most inisidiouis failing that we ha ve colici across hias. we I cl eve. g urie

unreported in the literatutre. During thle coulrse of produicintg \erly hiighi t--so ut it ll

simulations, we have noticed a tenideticY for odd(-eveti (lecoI p1 in tog1 occwi i a lotl, Il(e

length of planar shocks which are aligne(1 w\ith thle mesh . or an exam iplc see Figu re 11

Of the H iemann solvers that we have at on r diisposal . f ill, failin~g AMOI ctS: ant exact

solver[2-] . Roe's solver and Toro's li nearized sol vcr[231]. We emtpliasize t lie fact tI hat

this phenomena only becomes apparent for very high resol ut ion siltil iala ionls whtich

stiffer some systematic pertubation. However, as will be shown bleow. the requliredI

p~erturb~ation canl arise (quite i nnocuouisly. So we suspect that t his failing will prove

fairly widesra uneveyhgh resoluition simuilat ionis becomie commnuotplace dunc to

increases In comp~uter p)ower.

Now sintce we obtaini our high grid resol ut ion by ineatis of a fa irlv comnplex mesh

adapt ion scheme[ 17]. it seemed reasottablv to sutppose t hat thiiis odd-even decoupil yn

was attrilbutalble to some coding error. lbit ait exhaustive search for such ati error

provedl fruitless. Subsequently, we have managedl to reproduce t his failing in a more

cont rolled manner, as has a colleague uising anl ind~ependlent co(Ie[ 10]. So we have littIle

doubt that this tendency for odd-even decoupling to occur, conlstitultes a genuinle

failing, rat her thain being the manifestatilonl of some deficiency of otir code. "I'lat

said, our ad(ap~tivye mesh scheme clearly exasperates flths failing. In the next sect ionl

we shall present a p)ossible diagnosis of the mechanism which causes t his mode of

failure, here we merely present the evidence that it exists.

Figure 5 shows several snapshots of the (leisity contours from the siimulat ion of

a Plane shock wave, vJ, = 6 with -y 1.A. p~ropagating dlown a dulct . For t his

calculation xv~have used] Roe's scheme, together with a nominally uinifornm grid of 20

by 800 cells, with unilt spacing, the centre-line of which is pertutrlbed from that oif a

perfectly uniform mesh in the following manner

Y';.jmid =Yjmvji + Il0-( for i even,

1i.paid =yjmiid I-Cl0 for 1i odd(.

This pertuirlbation to the grid cent re-linle p~romotes odd-evenl uecoliplitig along thle

length of the shock. Note that, the shock has propagated some 15 channel widt Its

before the decoupling first becomes apparemit, see frame (b)). For this poinut In thle

calculation. Figure 6 shows a series of slices across the duct, for bo)0th t lIe( densitY and

pressure fields, as one moves from the head to the foot of the shock. hit (rest inglv,



within the shock t he decouplilg of thIle pressure field Is olt (of phase wit 11 t lic dc(oll-

pling of the d('nsitY field. .\s thle sh(o(k (llililles () lopropagate (owl; Ih' (111(d'u.()

the (hIceoupli g lbecoines prtl)oL ,-,iV(ev worse miilit Ile(, shiock 1breaks (hOw I (do1n J))pl(leY.

However, at no stage in - . calhtulat loll does thc le o(de l)Iow 1p il 1he Sense that it

generates a floatini p)oint ('x(epl ioni it simply )Igoes ast ray.

(a) X, • 2T7 (b) X., 300

(c) .X , ýz 3310 (d) X\, 3.:6(I

(e) X.1 .-z 4120 (f) X, 8 ISl

Figure 5: Odd-even deho' phing occllurs f(ir a shock propagaling (down a huct.
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3 Odd-Even Decoupling - A Diagnosis?

As e the tools do not exist that would allow us to perform a rigorous nonlinear

stability analysis for some shock capturing schene applied to the Euler equations.

However, it is possible to examine the way in which a scheme evolves certain sets

of prescribed data, so as to ascertain its likely stability characteristics. Since some

Riemann solvers allow 0(1(1-even decoupling to develop along the length of a plane

shock, it might prove fruitful to examine how different schemes evolve sawtooth-type

initial data. To this end, we consider the one-dimensional Euler equations with a

passive component of shear velocitv

pp) =0 (1)

a PI, + jy p(,2 +p

E (E + p)v

The quantities p, p. u, , and E are density, pressure, the passive shear component

of velocity, the velocity in the y direction, and the total energy per unit volume,

respectivelyv. For a perfect gas

E p +1 + 1 2)--. 1 -2p~2U)

where -/ is the ratio of specific heats. We assume that the computational mesh is

uniform, with mesh spacing Ay, and that the discrete solution at time t" is given by

P3=P + Pj =P+ u" =u, +3.v 0. (2)

if j is even, and

P" = - , P" p - It ,u 1 0.

if j is odd. Here fl" and p'1 are the amplitudes of the sawtooth profiles for the density

and the pressure fields. We shall consider two schemes which may be expressed in

the form
W 1, = - At (G" - G (3)

where W is the conserve(! variable vector (p, pu, pr,, E)', and G" , is a first-order flux

function computed from the states W"1 and W"'3 1+I •
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3.1 Roe's scheme

Using Roe's scheme[19], the interface flux for the system of equations (1) may he
written

12 + ,• k=4 21G(+: G; = ) o(k) •(k) e(k)

where the wave speeds {A(k)}, wave strengths {a(k) }, and eigenvectors {e(k)} are given

by

P) = b_& -a, A( 3 
( ii, A(4 } A (4) + = ;

Z~p- Apv _ _ .ip +/1 a Av

am AP) -/ 2aV a(2) =-P- A P, a(3) pA•u, a (4) = "+2 ai 2 'a 2 ' = 2 2(0 1 1
em= ( J , e(2) = (i j e(3) 1 , e(4) K C

Here, quantities written as (.) are the so-called Roe averaged quantities, a and h are
the Roe averaged sound speed and total enthalpy respectively, and A(.) represents

the forward difference operator (.)j+l - (e)j. Now for our chosen data,

(e),+j = (*b-L, and A( =),+= -A(*)_.

Therefore,

k=4 k=4• ,(k) A(k) ,(k,) (-, k) ( k) (.k).
"•j+ý j+i •j+ý I: 2. IA j_ -• ýyI -!-

k=1 k=1

Also, G7>1  Gn+1 , so the evolution scheme (3) may be written

wn+l = wfl + At k= k)A() k

w c sk=4n i

which can simnplified to

Wn•+1 =W1+u V-A- (4)Y -2a 0
h



- 1:3 -

Where, v. is the Courant number -•y. Recognizing that W" may be expressed as

0 0

and that by definition

-2 -2

-2 2

equation (4) may be manipulated to give,

h2 '

and

p+I = P?(1 - ,2v,).

From which it can be seen that the initial perturbation to the pressure field is damped,

provided that the CFL condition is met, that is

VY< 1.

However, the form of the evolution for the density perturbation exposes a flaw in

Roe's scheme; the density perturbation is fed directly from the pressure perturbation.

Making the loose approximation that ai remains constant, for a one-off disturbance
(VI O)

ý = _ v- 20 •+(1- 2,(2) + (I- 2vy) 2 + + ( 2,)-(1

Thus,

0 P•o p •0 • (5)
-h2

Therefore, if fio is of opposite sign to ýO then for a one-off disturbance j will grow

but it will remain bounded. But if the pressure field is continuously perturbed in

a systematic manner, no matter how small the pressure perturbations, j will grow

without bound, albeit slowly. For two-dimensional calculations, although we cannot
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prove it, we suspect that a strong shock wave moving normal to the y direction

provides this systematic perturbation.

Firstly, it is interesting to note that the failing reported in Section 2.6 is only

observed for strong shocks. For a strong shock wave, it seems reasonable to suppose

that •-j is more likely to be larger than IIl than would be the case for weak shocks.

So, even if /• and ý0 are initially of the same sign, they need not remain so, see (5).

Now consider frame (b) of Figure 5 and the associated profiles shown in Figure 6,

within the shock the odd-even decoupling of the pressure and density fields are indeed

out of phase with one another, which is consistent with the observations made above.

Such behaviour will cause the local sound speed to vary along the length of the

shock, its profile will exhibit a sawtooth perturbation which is in phase with that of

the pressure field. Consequently, the individual segments of the shock will be moving

alternately faster and slower than the nominal shock speed. Such movements will

exaggerate the sawtooth perturbation to the pressure field along the length of the

shock, but diminish that for the density field. The increased pressure perturbations

will then promote an increase in the density perturbations as detailed above, and so

the whole process repeats itself.

Since there are two competing processes that affect the density perturbations,

namely, the relative movements of the shock and the decoupling along the length of

the shock, we cannot categorically state that Roe's method is bound to break down.

However, the weight of numerical evidence suggests, that at least for strong shocks

Roe's scheme will break down in the manner described here. Given our arguments, it

should come as no surprise that Godunov's method also exhibits a tendency to allow

odd-even decoupling to occur along the length of a stronli shock wave. Since it is

the sweep parallel to the shock that primarily causes the instability, the differences

between using an exact Riemann solver and Roe's linearized solver for data that is

nominally uniform should have little bearing on the growth of the instability.

Finally, before moving on, it should be noted that none of the popular entropy

fixes which are applied to Roe's scheme cure this particular failing, excepting the

case where Harten's fix is applied to the shear and contact waves 2; simply altering

the acoustic wave speeds can have no affect, because of the symmetry of the data, both

waves will be changed by the same amount, and so the problem will persist. Also,

moving to a high-order version of Roe's scheme will not improve matters, because the

odd-even decoupling will cause a high-order flux function to drop to the- first-order

function.

2To reiterate the comment made in Section 2.4, applying Hfarten's entropy fix to the linearly

degenerate wave fields has no mathematical or physical justification, it is merely a convenient way
in which to add an amount of artificial dissipation.
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3.2 Einfeldt's HLLE scheme

For Einfeldt's HLLE scheme(4], the interface flux function is given by

G1 b(+)G+ - b(-)1G 2b(+)b(-)
2 b(+) - b(-) b(+) - b(-) (x> )

where

b(+) =max(O, (4) Ib(-) = max(O P), I - a),3+ j+T 1 aaj,=mxO -5

and P), A(4) are the two acoustic wave speeds from Roe's method. Now for our

chosen data, (,)j+. is equal to (9),_ therefore

a- '

b(+) _b(-), -af,

and

Using these signal weightings, it may be found that

+ = (1 -2v )v. ,

and

Pn+1 = (1 -

where,

VzVVy • ---

From which it can be seen that both the density and pressure perturbations are

damped, provided that the CFL condition is satisfied. Just as important, however, is

the fact that the pressure perturbation does not feed into the density perturbation, so

we would not expect the HLLE solver to exhibit the odd-even decoupling that afflicts

both Roe's scheme and Godunov's scheme; numerical experimentation confirms this

expectation.

It is our contention that any scheme for which it can be shown that the perturba-

tion to the pressure field feeds the perturbation to the density field, will be afflicted

by the odd-even decoupling shown in Figure 5. Thus it comes as no surprise to find

that Toro's linearized Riemann solver[231 is afflicted by this failing, but Liou's AUSM

scheme[1 1] is not. The way is now open for some mathematician to perform a more

rigorous analysis than we are able, so as to shed additional light on the mechlanism

which causes this particular failing.
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4 An Adaptive Riemann Solver

Having exposed many of the weaknesses of Riemann solvers, we now p)resent a simple

strategy, that we have found useful, for improving the robustness of Godunov-type

schemes. In essence, we select the precise flavour of upwinding to match the local

flow data, such that a particular Riemann solver is only employed in those situations

where it is known to give reliable results. By recognizing the limitations of any one

solver it is possible to reap its advantages without suffering its attendant failings.

Our synergetic strategy has a number of attractions, not least of which is that some

favoured solver need not be jettisoned simply because it, occasionally, fails. However,

it does introduce the difficulty of how to decide when to use one Riemann solver in

preference to another. But it has been our experience that this added difficulty is not

particularly bothersome, for we tend to combine a single high resolution Riemann

solver with just one or two other solvers that prove more reliable under conditions

which are fairly well-defined, and so a set of ad hoc switching functions suffice. For

example, some of the worst failings of Riemann solvers occur in the vicinity of strong

shock waves. To overcome such failings we employ Einfeldt's HLLE scheme. Now it

makes little sense to chop and change the choice of Riemann solver used along the

length of a shock wave, since to do so would inevitably perturb a planar shock front.

Hence, we apply this particular Riemann solver throughout the immediate vicinity of

a strong shock. Thus the HLLE switching function need only locate the position of a

shock wave, but such functions already exist in the guise of mesh refinement, monitor

functions.

A simple test that identifies those cell interfaces which are in the vicinity of a

strong shock is to check whether or not

>P, P1 (6)
min(pi, pr,)

where a is some threshold parameter which is problem dependent and pr and pt refer

to the pressures which act on the interface. If this condition is met, the two cells

separated by the interface are flagged as lying within a strong shock. So, when it

comes to computing cell-interface fluxes, if the cells either side of an interface are

both flagged as lying within a strong shock, the flux is computed using the HLLE

solver. Note that since numerical shocks are invariably smeared over several mesh

cells, it is worth locating shocks using a projection of the flow solution on a grid which

is coarser than that used for the calculation. On such a grid a shock will appear much
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less smeared, and so the left-hand side of the above switching function will be a fair

indication of its strength. Once a set of cells have been flagged on this coarse mesh,

the flags may be prolongated to the actual computational mesh so as to find those

cells which lie in the vicinity of a shock wave.

Before proceeding further, several observations should be made. Firstly, although

the HLLE solver is adjudged to be a low resolution scheme, it does in fact resolve
isolated shocks as well as an exact Riemann solver. Consequently, using this robust

solver in the vicinity of strong shock waves does not necessarily pollute a scheme's

resolution, as would be the case if artificial dissipation were used to augment the

dissipation provided via upwinding. For many inviscid calculations the amount of

pollution proves to be negligible, and whilst some degradation would be expected for
the case of a strong shock interacting with a boundary layer, it may well be unneces-

sary to employ the HLLE solver in such a situation because of the extra dissipation

provided by the real viscous terms. Secondly, although the HLLE switching function

requires a tunable parameter a, the retuning of this parameter is less involved than
the retuning of an artificial dissipation mechanism; in general, it is far simpler to

determine where extra dissipation should be added, than it is to determine how much

extra dissipation to add. For many problems, assuming that shocks are located as

described above, a sensible threshold on the shock strength can be specified a pri-

ori. Lastly, it should be noted that our strategy of switching Riemann solvers may

not prove suitable for those implicit schemes which require that the numerical flux

function be differentiable.

Figure 7 shows how the HLLE solver may be used to correct the tendency of

Roe's scheme to produce kinked Mach stems, c.f. Figure 4. For this calculation

the HLLE switching function was tuned such that it would only be activated by the
incident shock, and the principal Mach stem; a was simply set to half the strength of

the incident shock. Note that apart from the region near the Math stem, these new

results are very similar to the old ones. This shows that the HLLE scheme has had no
adverse affect on the the resolution of Roe's scheme. Similarly, Figure 9 shows how the

carbuncle phenomena may be circumvented, c.f. Figure 3. Here we have restricted the

HLLE solver to cells near the stagnation line in order to demonstrate how localized the
failing of Roe's scheme really is. In practice, however, we would advocate using the

HLLE scheme along the whole length of the bow shock, so as to maximize robustness

without compromising resolution. Again, a sensible value of a can be found a priori

by using some large fraction of the shock strength along the stagnation line which
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can be estimated, given the freestream Mach number, by assuming the flow is locally

one-dimensional. As shown in Figure 8, the HLLE solver may also be used to good

effect to prevent Godunov's scheme from admitting expansion shocks, c.f. Figure 1.

Here we have employed the HLLE solver along the sonic line, and in regions where

the expansion waves are strong.

Having presented the gist of our strategy, we see little point in trying to sell

a particular combination of solvers. Starting with some high resolution Riemann

solver, whose choice will inevitably be a matter of personal taste, the correct, com-

bination of solvers will depend both on that schemes weaknesses and on the specific

application in hand. In turn, the combination of Riemann solvers will dictate the

choice of switching functions. Therefore, we shall resist the temptation to recom-

mend a specific course of action, instead, we present two simulations that show how

an adaptive Riemann solver might be used to good effect. Briefly, both simulations

were done using the two-dimensional analogue of the one-dimensional Euler equations

given in Section 3. These equations were integrated using the two step finite-volume

scheme which is attributable to Hancock[25]. This scheme employs van Leer's MUSCL

approach[26] to achieve a second-order extension to Godunov's method, hence differ-

ent Riemann solvers may be slotted directly into the scheme so as to vary the flavour

of the upwinding. Although the calculations were performed using an adaptive mesh

algorithm[17, 18], the mesh refinement monitor function was such that the calcula-

tions employed a nominally uniform cartesian mesh.

Our first example concerns the simulation of a strong shock wave diffracting

around a 900 corner, the shock Mach number and the ratio of specific heats are

5.09 and 1.4 respectively. We have computed this test problem using a combination

of three different Riemann solvers; Toro's linearized Riemann solver was used to per-

form the MUSCL reconstruction step of Hancock's scheme as described by Quirk[18],

and the upwinding step was performed by adaptively selecting between Roe's solver

and the HLLE solver. The parameter a used by the switching function (6) was set to

1 so as to limit the HLLE solver to the incident and diffracted shock fronts, and to a

small region near the apex of the corner. Figure 10 shows a Schlieren-type snapshot

taken from this simulation, the different shades of grey depict the magnitude of the

gradient of the density field, the darker the shade the larger the magnitude; details of

this shading procedure are given in Appendix A. Here, it is not our intention to assess

the accuracy of these results, the interested reader may do this using the experimental

results of Bazhenova et al.[1], and the computational results of Hillier[7]. lnstead we
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wish to illustrate the fact that certain Riemann-solver failings, if left unaddressed,

can place an upper limit on the resolution of simulations that may be performed.

Consider the consequences of disabling the HLLE switching function, so that Roe's

solver alone is used for the upwinding stage of Hancock's scheme. The tendency of

Roe's solver to allow odd-even decoupling to occur along a planar shock wave which

is aligned with the grid will, sooner or later, cause this simulation to come to grief,

see Figure 11, thus precluding the possibility of performing very (Ictailed simulations.

By way of comparing the resolution of these two sets of results, for Figure 10 there

are 560 mesh cells from the apex of the corner to the point where the Mach stem

meets the wall, for Figure 11 there are only 120 cells. The question of whether or

not our adaptive mesh algorithm contains some flaw which exasperates the odd-even

decoupling is largely academic. The fact remains, that Roe's solver is susceptible to

this mode of failure whereas the HLLE solver is not. Whether the initial stimulus

comes from a distorted mesh as in Section 2 or from some component of the mesh

adaption scheme, as seems likely here, is immaterial.

So -- no" to lea-v, the impression that the above shortcoming is somehow pecu-

liar to Roe's method, we present a second set of results which are taken from the

interaction of a planar shock wave with a half-diamond; the shock Mach number is

2.85, the ratio of specific heats is 1.4, and the angle at the apex of the diamond is

900. As before, we have run this test problem using a combination of three different

Riemann solvers, but this time we have substituted an exact Riemann solver[24] in
place of Roe's linearized solver. Figure 12 shows a Schlieren-type snapshot from this

calculation, note that some 800 cells cover the width of the diamond so this calcula-

tion is well resolved. Also, as an aside we note that the quality of these results may

be gauged by comparing them with the experimental results given by Glass ct al.[6].

Once again, if the HLLE switching function is disabled, the simulation is ruined by

the odd-even decoupling that occurs along the length of the incident shock, see Fig-

ure 13. Note that this second calculation is of lower resolution than the first, only

400 cells cover the width of the diamond.

In this section we have attempted to show that the robustness of Godunov-type

schemes may be improved by employing an adaptive Riemann solver, where the spe-

cific flavour of upwinding is altered to suit the local flow conditions. If used sensibly,

this strategy can overcome most known failings of individual solvers. Despite our

efforts, we recognize that the majority of shock-capturing practitioners will continue

to use artificial dissipation as a band aid to fix a particular Rieniann solver at the
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first signs of any failing, simply because it is expedient to do so. Whilst we find this

approach disappointing, the principal aim of this paper is to emphasize the fact that

most of the Riemann solvers that are in common use must bc augmncted in soNeI

way, if they are to be used for the purpose of producing, genuinely, high resolution

simulations of shock hydrodynamic phenomena.
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(a) (b)

Figure 7: The HLLE scheme can be used to circumvent the tendency of Roe's method

to produce kinked Mach stems: (a) Pressure Contours, (b) HLLE switching function.

(a) ())

Figure 8: The HLLE scheme can be used to prevent Godunov's method from I)rodu(c-

ing expansion shocks (a) Density Contours, (b) HLLE switching function.



(a) (h)

Figure 9: The HLLE scheme can be used to circumvent the carbuncle pehenomena:

(a) Density Contours, (b) HLLE switching function.
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Figure 10: A Schlieren-type snapshot from the diffraction of a strong shock wave

around a 90' degree corner.
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Figure 11: On its own, Roe's approximate Riemann solver cannot be used to repro-

duce the resolution of the simulation shown in Figure 10.
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Figure 12: A Schhieren-type snapshot from the interaction of a p~lanlar shock wave

with a half-diamond.
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Figure 13: On its own, an exact Riemann solver cannot be used to reproduce the

resolution of the simulation shown in Figure 12.
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5 Conclusions

Unless the dissipation provided via upwinding is augmented by some other mecha-

nism, any Godunov-type scheme built upon a single Riemann solver will probably be

flawed. For example, when subjected to some small but systematic form of pertur-

bation, most popular Riemann solvers for the Euler equations, including the exact

solver, cannot prevent odd-even decoupling occurring along the length of a strong

shock wave which is aligned with the computational mesh. Thus far, this flaw has

gone largely unnoticed simply because it is only exposed by very high resolution sim-

ulations. However, given that the required perturbations can arise quite innocuously,

this mode of failure should prove fairly widespread once genuinely high resolution

simulations become commonplace due to increases in computer power.

Although most flaws can be controlled by the judicious use of a small amount

of artificial dissipation, to do so necessarily leads to a reduction in the resolution of

the scheme. We favour an alternative approach, whereby the the failings of any one

Riemann solver are circumvented by combining it with one or more complementary

solvers. In essence, we advocate selecting the precise flavour of upwinding to suit

the flow data. Admittedly, this synergetic strategy is not as aesthetically pleasing as

having a single Riemann solver for all occasions, but we have shown that it can be

made to work quite effectively. Besides which, Riemann solvers are sometimes touted

as being a solution-adaptive technique, so the concept of an adaptive Riemann solver

is not that contrived.

Looking to the future, it is to be hoped that genuinely multi-dimensional Rie-

mann solvers will overcome many of the shortcomings of today's dimensionally-split

schemes. However, given the way in which the present shortcomings have been stum-

bled across, these multi-dimensional schemes may themselves arrive complete with

subtle failings with which to ensnare the unwary.
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A Schlieren-type Plots

The plots shown in Figures 10 and 12 depict the magnitude of the gradient of the

density field, viz

(ap) 2 1O~2

and hence they may be viewed as idealized Schlieren images. So as to accentuate

weak flow features the following nonlinear shading function has been used,

shade = exp(-koj)

Here, k is a constant and V) is a weighting function given by

IVPI - IVpIO

where

IVplo = ko0Vplm,,t,

jVpjj = kilVplrnx,

k0 and k, being constants. Note that shade is limited to values between 0 and 1,

so for a 24 bit colour graphics system the grey level shade may be converted to an

< R, G, B > triplet using

< 255 * shade, 255 * shade, 255 * shade > .

For both Figures the constants k, ko, and k, were set to 5, 0.05 and -0.001 respec-

tively.
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